ar X iv : 0 80 5 . 20 65 v 1 [ m at h . A G ] 1 4 M ay 2 00 8 Virtual pull - backs

نویسنده

  • Cristina Manolache
چکیده

We propose a generalization of Gysin maps for DM-type morphisms of stacks F → G that admit a perfect relative obstruction theory E F/G. We prove functoriality properties of the generalized Gysin maps. As applications, we analyze Gromov-Witten invariants of blow-ups and we give a short proof of Costello’s push-forward formula.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 5 . 25 68 v 1 [ m at h . G M ] 1 6 M ay 2 00 8 AMBIGUITY THEORY , OLD AND NEW

This is a introductory survey of some recent developments of “Galois ideas” in Arithmetic, Complex Analysis, Transcendental Number Theory and Quantum Field Theory, and of some of their interrelations.

متن کامل

ar X iv : 0 80 5 . 32 59 v 1 [ m at h . A G ] 2 1 M ay 2 00 8 SELF - DUAL PROJECTIVE TORIC VARIETIES

Let T be a torus over an algebraically closed field k of characteristic 0, and consider a projective T -module P(V ). We determine when a projective toric subvariety X ⊂ P(V ) is self-dual, in terms of the configuration of weights of V .

متن کامل

ar X iv : 0 80 5 . 10 03 v 1 [ m at h . SP ] 7 M ay 2 00 8 GEODESICS ON WEIGHTED PROJECTIVE SPACES

We study the inverse spectral problem for weighted projective spaces using wave-trace methods. We show that in many cases one can “hear” the weights of a weighted projective space.

متن کامل

ar X iv : 0 80 5 . 18 60 v 2 [ m at h . FA ] 1 5 M ay 2 00 8 UNCONDITIONAL BASIC SEQUENCES IN SPACES OF LARGE DENSITY

We study the problem of the existence of unconditional basic sequences in Banach spaces of high density. We show, in particular, the relative consistency with GCH of the statement that every Banach space of density אω contains an unconditional basic sequence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008